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We show that the S-matrix for electrons propagating in a waveguide has dif-
ferent statistical properties depending on whether the waveguide cavity shape
gives rise to chaotic or integrable behavior classically. We obtain distributions
of energy level spacings for integrable and chaotic billiards shaped like the
waveguide cavity. We also obtain distributions for Wigner delay times and
resonance widths for the waveguide, for integrable and chaotic cavity
geometries. Our results, obtained by direct numerical calculation of the electron
wave function, are consistent with the predictions of random matrix theory.

KEY WORDS: Conductance; electron waveguide; electron scattering; ran-
dom matrix theory; finite element method.

1. INTRODUCTION

In recent years it has become possible experimentally to produce two
dimensional micron size electron waveguides at semiconductor interfaces.
The electron dynamics in these devices is two dimensional because the
degree of freedom perpendicular to the interface allows only a single quan-
tum eigenstate. The shape of the confining walls can strongly affect the
qualitative nature of the electron transmission probability and, in experi-
ments, geometries have been(1) selected specifically to show this aspect of
electron conductance. The transmission properties of a waveguide whose
classical counterpart exhibits chaotic scattering will be different from one
which is classically integrable.(2) This difference between classically chaotic
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and classically regular quantum systems also occurs for closed systems.(3)

For example, for closed systems it has been shown that the quantum coun-
terpart of a classically chaotic system has a different eigenvalue distribution
compared to eigenvalue distributions obtained for classically integrable
geometries.(4)

Quantum chaotic scattering in 2-dimensional electron waveguides has
been an important research topic in recent years due to its practical impor-
tance and rich theoretical implications.(5) The direct solution of the
Schro� dinger equation for a 2-dimensional electron gas can be obtained
numerically for an open system (the scattering case). However, it is difficult
to obtain solutions in regimes with many propagating modes due to
necessity of having more mesh points to resolve the wave function in the
scattering region. Statistical (random matrix theory)(6�8) and semi-classical
methods(5, 9, 10) are the main theoretical tools used to describe chaotic
behavior in complex geometries with many propagating modes.

In this paper, we numerically solve the Schro� dinger equation for the
electron wave function in electron waveguides with both chaotic and
regular geometries. We have chosen a waveguide with straight leads and
with a cavity which is basically rectangular but has one rippled wall with
a ripple amplitude which can be varied. We focus on an energy interval
where only four propagating modes occur in the leads. This regime con-
tains enough modes to enable us to build statistics, but yet it is far from
the semi-classical regime. As we shall show, the statistical properties of the
transmission probability are quite different for the case of zero ripple
amplitude and for the case of large ripple amplitude.

The waveguide we consider in this paper is shown in Fig. 1. We attach
two aligned leads, each of width w=100 A1 , to a rippled box. Since such
waveguides can be fabricated in GaAs�AlGaAs heterostructures, we
assume the electrons have an effective mass m*=0.067 me , where me is
the mass of the electron. The typical electron density is ns=2.8 } 1015 m&2

and the Fermi energy is EF =?�2ns �m*=10 mev. In this paper, we have
neglected electron�electron interactions in order to compare our numerical
results to random matrix predictions which also neglect electron�electron
interactions.

In the following sections, we compare the scattering properties of two
different waveguides, one with a rectangular cavity and the other with a
rippled wall whose ripple amplitude is large enough so that the motion
inside is completely chaotic. We begin in Section 2 by comparing the
energy eigenvalue spacing statistics of a particle in closed billiards with
these shapes. In Section 3, we analyze the spectral properties of the scatter-
ing S-matrix for waveguides with both rectangular and rippled cavities. In
the last section, we make some concluding remarks.
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2. CLOSED SYSTEM

A closed ripple billiard can be visualized in Fig. 1 if we remove the
leads and put hard walls along the dotted lines. The ripple boundary has
the form, y=b+a } cos((4?�L) x) and we have chosen the following param-
eters for the rippled box, L=200 A1 , d=200, and a=3, 5, 7, 9, 10 A1 . We
obtain data for this range of ripple amplitudes in order to improve
the statistics for our histograms. A Poincare surface of section (obtained
using the Birkhoff coordinates on the lower boundary) shows that motion
of a classical particle is fully chaotic for ripple size a>2 A1 and it is
integrable when a=0 A1 . For the closed system, the Schro� dinger equation,
&(�2�2m)(�2

x+�2
y) �=En�, is subject to Dirichlet boundary conditions on

all the walls. The wave function � is real with real energy eigenvalues En .
We have obtained the energy eigenvalues for the rectangular and ripple
billiards in two different ways, one by direct diagonalization of the
Hamiltonian matrix and the other using the finite element program that we
use to study the electron waveguides. This gives us one way to check our
finite element waveguide program. For the rectangular billiard the eigen-
values are known and can be written in analytic form, which we give
below. For the chaotic billiard, we have diagonalized the Hamiltonian
matrix using a method that was used for an infinite ripple channel.(11) This
method is interesting in its own right and we describe it in the Appendix.

Fig. 1. The geometry of the two dimensional electron wave guide used in our calculations.
The rippled billiard is the region defined with dotted lines replaced by walls and leads
removed. Here ``a'' is the width of the ripple, ``d=b+a'' is the width of the cavity, ``w'' is the
width of the leads, and ``L'' is the length of the cavity.
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One common test of whether a bounded quantum system is integrable
or chaotic is to plot a histogram of the nearest neighbor spacings between
energy eigenvalues of the system. The energy eigenvalues of the rectangular
billiard are given by Emn=(m?�d )2+(n?�L)2, where m and n are integers
and we have chosen d=199 A1 and L=200 A1 . In Fig. (2.a), we show the
distribution of spacings between nearest neighbor energy eigenvalues
(obtained from the analytic expression above) for the rectangular billiard
using 2500 eigenvalue spacings. In Fig. (2.b), we show the histogram of
nearest neighbor energy eigenvalue spacings for the ripple billiard with
a=10 A1 , using 3000 eigenvalue spacings obtained using the techniques
described in the Appendix. In both cases, we have separated states of dif-
ferent parity and we have found energy spacings only for states of the same
parity. For each value of parity, we have unfolded the energy eigenvalues
so that we have a unit average spacing over any energy interval(22) The
nearest neighbor energy eigenvalue spacing distribution for the rectangular
billiard is known to be Poisson,(7) and that is what we find for our system.

Fig. 2. Histogram of nearest-neighbor eigenvalue spacings in terms of scaled spacing for (a)
rectangular box, (b) Rippled box. In (a) we have chosen L=199 A1 and d=200 A1 with 2500
eigenvalues. The fitting curve is y=exp(&s�(s) ). In (b) we have used 3000 eigenvalues for
the ripple size a=10 A1 . The fitting curve is the Wigner distribution with unit average spacing.
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The nearest-neighbor spacing for the ripple billiard resembles the Wigner
distribution

PWigner(s)=
?
2

s exp \&
?
4

s2+ (1)

which is the predicted result of random matrix theory(7) for a closed quan-
tum system whose underlying dynamics is chaotic.

Let us note that we have obtained good agreement using the same
finite element method (FEM) (13) that we will use for the open systems in
the remainder of the paper. For the integrable case, the FEM agrees with
exact results to an accuracy of 10&6, and the diagonalization technique (see
Appendix) agrees to an accuracy of 10&12. For the chaotic case, the FEM
agrees with the diagonalization method to an accuracy of 10&4. The FEM
leads to a generalized eigenvalue problem for the rippled box.

3. THE OPEN SYSTEM

3.1. Chaotic Versus Integrable Wave Guide

Two infinitely long leads can be attached to the rippled billiard to
convert the system into an electron waveguide (an open system). The
Schro� dinger equation describes the motion of the electron wave function
inside the waveguide. We assume the potential is zero inside the cavity and
inside the leads and infinite outside these regions (the walls are infinitely
hard). The wave function inside the cavity vanishes at the boundary of the
cavity. The remaining boundary conditions are given in terms of the con-
tinuity condition for the wave function at the cavity-lead boundary. The
solution of the Schro� dinger equation inside the leads is known and is given
as a superposition of plane waves,

�L(x, y)= :
N

n=1

(aL
n eikn x+bL

n e&ikn x) ,n( y) for x�0

(2)

�R(x, y)= :
N

n=1

(aR
n eikn x+bR

n e&ikn x) ,n( y) for x�L

where ,n=- 2�w sin(n?y�w) and N is the number of transverse modes.
N is infinite in principal but we have truncated it so that all propagating
and some evanescent modes have been included in calculations. The par-
ticle energy is the sum of a quantized part due to the transverse degree
of freedom, and a continuous part due to the longitudinal motion. It
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has the form E=�2k2
n �2m+En , where kn is the wave vector, kn=

- (2m��2)(E&En), and En=�2n2?2�2md 2 is the energy associated with the
transverse motion. Boundary conditions on the cavity-lead interface are
determined by the continuity of the wave function and its first derivative on
the interface.

The electron probability density and current inside the cavity are given
in terms of the wave function as,

\(x, y)=�*(x, y) �(x, y) (3)

j(x, y)=
i

2m
(�*(x, y) } {�(x, y)&�(x, y) } {�*(x, y)) (4)

respectively, where �* is Hermitian conjugate of � and {=x̂�x+ŷ�y .
The S-matrix for the waveguide is given in terms of the transmission

probability amplitudes, tmn(E )=(- kn �km ) aR
n �aL

m , and t$mn(E )=
(- kn �km ) bL

n �bR
m , and the reflection probability amplitudes, rmn(E )=

(- kn �km ) bL
n �aL

m, and r$mn(E )=(- kn �km ) aR
n �bR

m. The scaling with wave
vector is necessary since the transmission amplitudes are defined as the
ratio of currents from one propagating mode to another. The S-matrix is
given in terms of reflection and transmission matrices so that S� #( r�

t�
t� $
r� $),

The matrices, r� and r� $, describe reflection from left to left and right to right,
respectively. The matrices, t� and t� $ describe transmission from left to right
and from right to left, respectively. The total transmission and reflection
probabilities for propagating mode, m, are

Tm= :
N

n=1

|tnm |2 and Rm= :
N

n=1

|rmn |2 (5)

respectively. The Landauer conductance, G, is proportional to the sum of
all transmission probabilities,

G=
2e2

�
:
m

Tm (6)

We can define a vector of coefficients describing a wave incident on
the cavity, (7)

c� in#(aL
1 , aL

2 ,..., aL
N , bR

1 , bR
2 ,..., bR

N ) (7)

A complimentary vector describing transmitted and reflected waves is
defined as

c� out#(aR
1 , aR

2 ,..., aR
N , bL

1 , bL
2 ,..., bL

N ) (8)
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The scattering matrix, S� , is a 2N_2N unitary matrix which relates these
two vectors,

c� out=S� } c� in (9)

S� is a unitary matrix because of current conservation and it is also
symmetric due to the time reversal symmetry of our system. For the
integrable cavity we have 4-fold symmetry and the S� is block diagonal.(14)

Eigenvalues of the S-matrix lie on the unit circle and thus they can be
represented by the phase angle of the complex exponential, ei%n(E ) where the
eigenphases, %n(E ), are functions of energy (see Fig. 3). A FEM has been
used to find the wave function inside the cavity. A description of this
method can be found in reference.(15) (It is useful to note that this FEM
method has also been used to find the distribution of resonance spacings
for a Sinai billiard wave guide.(16)) Since it was necessary to have high
accuracy when calculating the S-matrix we used a quadratic basis and 9393
adaptive mesh points which minimize error coming from the curved

Fig. 3. Phases of S matrix. (a) Integrable waveguide, (b) ripple waveguide (a=10 A1 ). The
angle % is in radians.

819Chaotic and Integrable Electron Waveguides



boundary condition. We checked our numerical results by requiring that
the absolute value of S-matrix eigenvalues be equal to one. The error is less
than 10&5 for the calculated eigenvalues of the S-matrix.

We find the eigenvalues of the S-matrix at each energy by diagonaliz-
ing the S-matrix for that energy. However, the eigenvalues found for
neighboring energies are not ordered. Therefore, we use the following
technique to order eigenvalues in energy. For each eigenvector at energy, E,
we calculate its inner product with each of the eigenvectors at energy
E+2E. For each S-matrix eigenvector at energy, E, the maximum of the
inner products with the eigenvectors at energy, E+2E, identifies the
corresponding eigenvector at energy, E+2E. In Fig. 3, we show the phase
angle curves in the energy interval where the lead can support 4 propagat-
ing modes. In this energy interval, the S-matrix is an 8 by 8 matrix and
there are 8 eigenphases. After unwrapping phase angles (``unwrapping''
means we allow the phase to grow continuously when it becomes greater
than ? rather than map it back onto the [&?, ?] interval), we obtain a
continuous change in the eigenphases as a function of energy. Figure 3a
shows the eigenphases for the waveguide with rectangular cavity (a=0 A1 ),
and Fig. 3b shows them for the ripple cavity (a=10 A1 ). It is interesting to
note that the eigenphases of the rectangular cavity undergo more abrupt
changes than those of the ripple cavity. These abrupt changes can be
understood in terms of the matching of transverse modes in the leads and
cavities. For a rectangular cavity, the electron state inside the cavity con-
sists of a superposition of a few transverse modes with the wave number
different than the transverse mode in the leads. Only modes of like parity
in the lead and cavity can couple. As energy is varied allowed modes in the
cavity can abruptly change parity. If a system is at resonance for a given
energy, a small change in energy can cause the system to go abruptly out
of resonance as the parity of cavity modes change. For the ripple cavity,
the electron state in the cavity has no definite parity and abrupt mismatch
cannot occur as energy is changed. We will see these different behaviors of
the rectangular and ripple cavities again when we look at the Wigner delay
times.

Matrix elements and eigenvalues of the S-matrix at neighboring
energies are correlated. In order to see the range of the correlation we have
calculated the auto-correlation function of S-matrix eigenvalues in the
following way,

Cs(2E )#\N
? +

2 1
2N(E1&E2)

:
2N

n
|

E2

E1

dE[sn(E+2E ) sn(E )&(sn(E ))2]

(10)
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Fig. 4. The auto-correlation function of the eigenvalues of S-matrix elements averaged over
the total number of eigenvalues. The absolute value of the correlation (in units of eV) is
shown for a=10 A1 ripple (solid curve) and rectangular (dashed curve) waveguides.

where sn(E )=ei%n(E ) are eigenvalues of the S-matrix at energy, E. The
integration in Eq. (10) is approximated by a summation over energies, with
energy spacings, $Er0.002 eV. The absolute value of normalized correla-
tion function, |Cs(2E )|�|Cs(0)|, is shown in Fig. 4 for ripple (a=10 A1 ) and
integrable cavities. We see that the correlation range of the eigenvalues is
greater for the chaotic waveguide than in the integrable waveguide. This is
directly related to the fact that the scattering resonances are sharper (as a
function of energy) for the rectangle cavity than for the ripple cavity. The
correlation function in Eq. (10) has also been calculated analytically from
random matrix theory in reference.(17) We say more about the comparison
between our exact results and the random matrix theory predictions in a
later section.

The Wigner delay time matrix, {� (E ), is defined in terms of the energy
derivative of the S-matrix:

{� (E )=i�
�S� -

�E
S� (11)
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When the S-matrix is diagonalized, the partial delay time, {n(e), for the n th
eigenmode of the S-matrix, is given as the derivative of the n th eigenphase,
{n=�%n(E )��E. The Wigner delay time is a measure of the time delay of
the electron in traversing the waveguide cavity as compared to the time it
would take to travel the same distance in the leads (see ref. 18 for addi-
tional discussion). We have computed the partial Wigner delay times, as a
function of energy, for both the rectangular and ripple (a=10 A1 )
waveguides. Figures 5 and 6 show the relation between the transmission
probability and the partial Wigner delay time for the two geometries.
Resonances occur at energies at which the transmission probability drops
toward zero and the Wigner delay time is peaked. This resonance structure
comes from the fact that transmission poles and zeros occur in pairs due
to the unitarity of S-matrix. (See ref. 19.) The peak values of Wigner delay
time show that the delay of the electron in traversing the cavity is greatly
increased at resonance energies. The first thing to note is that the integrable
waveguide has a Wigner delay time at resonance energies which can be
an order of magnitude larger than for the chaotic case. For example

Fig. 5. (a) The transmission probability vs. energy and (b) partial Wigner delay time (in
units of pico-second) vs. energy for integrable waveguide.
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Fig. 6. (a) The transmission probability vs. energy and (b) partial Wigner delay time (in
units of pico-second) vs. energy for rippled waveguide, (a=10 A1 ).

{=1 } 10&11 s at E=1.384 eV and {=2.8 } 10&11 s at E=1.504 eV in the
integrable waveguide compared to {=3.21 } 10&12 s at E=1.514 eV in
rippled waveguide. (Note that a classical free electron at these energies
would travel the length of the waveguide (L=200 A1 ) at about 10&15 s
without making any collision.) A second point to note is that at each
energy away from a resonance the chaotic cavity has a longer delay time
than the integrable cavity. A third point to note in Figs. 5 and 6 is that for
the integrable waveguide the odd modes are uncoupled from the even
modes due to the transverse symmetry of the waveguide, whereas in the
chaotic waveguide all the modes are coupled together.

The relation between the conductance, G, given by Eq. (6) and the
average Wigner delay time, ({(E ))= 1

8 �8
n=1 (d%n�dE ), is shown in Fig. 7.

The integrable case has much sharper resonances than the chaotic case.
In the integrable cavity the current carried by a mode can actually

drop to zero, whereas in the chaotic cavity we did not find cases where the
current drops to zero because the broader resonances always seem to have
some overlap. The average Wigner delay time away from resonance is
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Fig. 7. A comparison of the Landauer conductance, G (dashed lines), with average Wigner
delay time (solid line) for (a)integrable cavity, (b) ripple cavity (a=10 A1 ). G is given in units
of conductance quanta, 2e2��=77 +S and { is given in units of pico-seconds.

consistently greater for the chaotic cavity than for the integrable cavity
primarily because the resonances in the chaotic cavity are broader.

It is useful to look at the auto-correlation function, C{(2E ), for the
Wigner time delay to determine the energy range over which the delay
times are correlated. It is defined

C{(2E )#\N
? +

2 1
2N(E2&E1)

:
2N

n
|

E2

E1

dE _d%n(E+2E )
dE

d%n(E )
dE

&\d%n(E )
dE +

2

&
(12)

The auto-correlation functions for each propagating mode are shown in
Fig. 8. We averaged C{(2E ) over an energy interval, [E1=1.212 eV,
E2=1.7 eV] which supports four propagating modes in the leads. We
approximated the integration in Eq. (12) by a summation over 244 energies
with spacing 0.002 eV. The correlation function changes its form from a
Lorentzian behavior for small 2E to exponential decay with decreasing
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Fig. 8. The auto-correlation function of Wigner delay times (normalized to unity at zero
delay) averaged over phases. The dashed line is for the integrable waveguide. Several different
ripple sizes are shown.

ripple size. As is the case for the correlation of eigenvalues, the correlation
of delay times inside the integrable waveguide falls off faster than in the
chaotic waveguide. The fast decay of delay time correlations in the rec-
tangular cavity can be understood in terms of the sharp resonance peaks.
In the rippled cavity resonance peaks are quite wide in energy and the
correlation decays more slowly.

The electron probability distribution and current inside the waveguide
(given in Eqs. (3) and (4)) also show some features which distinguish the
integrable and the chaotic systems at near resonance and off resonance
regions. In Fig. 9 we show the electron probability density, \(x, y),
inside the waveguide cavity for both integrable and chaotic waveguides.
Figure 9(a) corresponds to mode 1, Fig. 9(b) mode 2, Fig. 9(c) mode 3,
and Fig. 9(d) mode 4 of an integrable waveguide near the resonance energy
E=1.506 eV. We have transverse symmetry of wave function which makes
\(x, y) symmetric in this direction. Similarly, Fig. 9(e) corresponds to
mode 1, Fig. 9(f ) mode 2, Fig. 9(g) mode 3,and,Fig. 9(h) mode 4 of the
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Fig. 9. The charge density for 4 modes of integrable waveguide, at the resonance energy,
E=1.5406 eV. Transmission probabilities are (a) T1=0.532 (b) T2=0.561, (c) T3=0.247,
and (d) T4=0.735. The charge density for 4 modes of the ripple waveguide shown at the
resonance energy, E=1.514 eV. Transmission probabilities are (e) T1=0.880, (f ) T2=0.265,
( g) T3=0.463, and (h) T4=0.488.

ripple waveguide (a=10 A1 ) near the resonance energy E=1.514 eV. The
ripple waveguide is not symmetric in the transverse direction, and we
don't see transverse symmetry in Figs. 9(e)�(h). We observe that near the
resonance energy structures are excited which resemble a superposition of
closed system eigenfunctions. Figures 9(a) and 9(c), for example, resemble
energy eigenfunction E91=1.5416 eV of the closed billiard, Fig. 9(b) resembles
E48=1.504 eV and, Fig. 9(d) resemble E84=1.504 eV which is close to the
resonance energy of the open system. This is an indication that these are
Fano resonances.(20) From Figs. 9(a) and 9(c) we see that modes 1 and 3
are strongly coupled and have similar probability densities. Note also the
similarity of their transmission probabilities (see Fig. 5). For the integrable
system, the lack of coupling between the pair of modes 1 and 3 and the
pair of modes 2 and 4 is due to the transverse parity of the system. In the
rippled waveguide, all the modes are coupled although coupling between
mode 3 and 4 is strongest as it can be seen from Figs. 9(g) and 9(h) (see
also Fig. 6.).

When multiple modes (channels) flow in the leads, the total current
inside the cavity is left-right symmetric. For the integrable case, total
current of coupled modes are left-right symmetric. In Fig. 10(a) we show
the total current in the rectangular cavity for incident channels 1 and 3
near the resoanance energy, E=1.375 eV. In Fig. 10(b) we show the total
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Fig. 10. (a) The sum of the current of mode 1 and mode 3 at resonance, E=1.375 eV for
the integrable waveguide. (b) The total current of modes 2 and 4 at resonance, E=1.375 eV
for the integrable waveguide. (c) The total current of all 4 modes at resonance energy
E=1.514 eV for the chaotic waveguide. (d) Same as (c) but at an off resonance energy,
E=1.504 eV.

current inside the rectangular cavity for channels 2 and 4 near resonance
energy E=1.375 eV. In Fig. 10(c) we show the total current in the rippled
cavity near resonance energy, E=1.516 eV. Figure 10(d) shows the same
sum of currents in the chaotic cavity, but at an off resonance energy,
E=1.504 eV.

3.2. Comparison to Random Matrix Theory Results

One of the main purposes of this paper is to compare the statistical
properties of the S-matrix for the chaotic cavity with the predictions of
random matrix theory. The predictions of random matrix theory (RMT)
are based on a picture of conductance through a scattering region with the
scattering process governed by a random Hamiltonian. In the RMT approach,
the scattering problem is often formulated in terms of a model Hamiltonian
which involves the coupling of a closed system to the continuum.(18, 21, 17)
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(It can also be formulated starting from a random S-matrix.(24)) The model
Hamiltonian is,

H� = :
N

k=1

Ek |k)(k|+ :
2N

k=1
| dE E |c, E )(c, E |

+ g :
2N

c=1

:
N

k=1
| dE Wkc(E )( |k)(c, E |+ |c, E )(k| ) (13)

where g is the overall strength of the coupling between the continuum (the
leads) and the scattering region (the cavity), and Wkc(E ) gives the strength
of this coupling as a function of energy. The Hilbert space is spanned by
N discrete states |k) (eigenstates of the closed cavity) and 2N continuum
states, |c, E ) (channels in the leads). If W depends weakly on energy, then
the S-matrix is given by,

S(E� )=
1+iK�
1&iK�

, K� = g2W - 1
E&H� eff

W (14)

where Heff, kl=Hkl&ig2 �2N
c=1 WkcWcl is the effective Hamiltonian. One

prediction of RMT(18) is that near a resonance, the Wigner delay time,
{n(E ), can be written

{n=
1n

(E&En)2+1 2
n �4

(15)

where En is the resonance energy and 1n is the resonance width. In ref. 21,
eigenvalues and eigenvectors of the auxiliary matrix, K� , have been used to
find the distribution of partial delay times, P({n). Their result for arbitrary
coupling strength g is,

P({n)=
e (&g2�{n)

1F1(N; N+1�2; (g2& g&2)�{n)
g(2N&1)1 (N+1�2) { (N+3�2)

n

(16)

where we have written P({n) for a Gaussian Orthogonal Ensemble(GOE).
The function, 1F1(a, b, z), is the confluent hypergeometric function. N is the
number of propagating modes (channels) in the leads.

We have compared our results with predictions of random matrix
theory. We have four modes in the leads so we take N=4 in Eq. (16). We
have constructed of histogram of 10808 values of the Wigner delay time
taking delay times for five different ripple amplitudes, a=3, 5, 7, 9, 10 A1 ,
in order to improve our statistics (Fig. 11). The distribution in Eq. (16)
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Fig. 11. Histogram of Wigner delay times for (a) integrable and (b) ripple waveguides. In
case (a), there are a total of 4120 data points. This data can be described in terms of a Poisson
distribution.The fitted curve is exp(&{�<{). In case (b), a total of 10808 data points is used.
The fitted curve is from Eq. (16) using P({)=�8

n=1 P({n).

shows good agreement with our numerical data (see Fig. 9b) for the coupl-
ing strength g=2.3. This value of g indicates a strong coupling between
channels in the leads and the eigenmodes of the cavity. This is not unexpected
since we have a rather large ratio of the width of leads to the cavity width.
The integrable channel results cannot be described with RMT. If we com-
pare the distribution of delay times for the integrable (Fig. 9a) and chaotic
cases (Fig. 9b), we again see the systematically longer delay times in the
chaotic cavity.

The correlation function for S-matrix elements in RMT has been
found for the GOE case in ref. 28. They used an ensemble average of
matrix elements and assumed ergodicity to compare their results with the
more conventional energy averaged case. In ref. 17 it is shown that the
diagonalized S-matrix should have the same statistical properties as the
undiagonalized case. Since in our system leads are aligned, this correlation
function shows oscillatory behavior for larger values of 2E. There is no
explicit expression for C{(2E ), but in ref. 26 limiting values have been
obtained. For small 2E RMT predicts that it should behave like a
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Lorentzian and for large 2E it asymptotically approaches &2�(?2E )2 for
the chaotic waveguide (see, for example, refs. 26 and 27) which is in agree-
ment with Fig. 8.

We have also calculated the distribution the widths of delay time
resonance peaks. To build statistics we again used different ripple sizes,
a=3, 5, 7, 9, 10 A1 . The first and second derivatives of partial time delays
were used to find the delay times at resonance energies and their full width
at half maximum (FWHM). While calculating FWHM, we used inflection
points (roots of second derivatives) to find the height of resonance delay
times when they were comparable to the average delay time. The distribu-
tion of widths for a chaotic system is predicted to be a /2 distribution when
coupling to the continuum is weak. When coupling to the continuum is
strong the distribution is changed to power law decay.(25) We observed a
1 &3�2 dependence of the scaled widths in our system (see Fig. 12). We also
observed that for the integrable case we have what appears to be an
exponential decay of the distribution.

Fig. 12. The distribution of resonance widths for (a) integrable and (b) ripple waveguides.
In (a) we used 185 resonances and fitted the histogram to the function, exp(&41�(1 ) ). In
case (b) we have 350 resonances and we have fitted the histogram with the function,
(1�(1 ) )&3�2.
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4. CONCLUDING REMARKS

Our numerical results indicate that the behavior of ballistic electron
waves in the waveguide depends strongly on geometry. Classically chaotic
geometries produce characteristically different transport properties than
integrable geometries. The electron suffers systematically longer delays
when traversing the chaotic cavity than when traversing the integrable
cavity. We have examined transport properties in several ways. We have
determined the energy dependence of transmission probabilities, Wigner
delay times, S-matrix eigenvalue correlations, and Wigner delay time
correlations. We have determined the spatial dependence of probability
densities and current distributions at resonance energies. We found dif-
ferences in resonance structures in the chaotic and integrable geometries.

The statistical distribution of eigenvalue spacings in a closed system
provides a signature of quantum chaos as we have seen for the closed
counter part of our system. In random matrix theories and semi classical
calculations it was found that the chaotic behavior of an underlying closed
system directly affects the properties of the system when it is open. We
confirm this for our system by calculating the S-matrix for our chaotic
open system directly. We see that Wigner delay times derived from the
S-matrix have different distributions in integrable and chaotic wave guides.
We compared the distribution for the chaotic case with random matrix
theory predictions and we found good agreement with those predictions.
The distribution of resonant delay time widths also shows characteristic
differences for integrable and chaotic geometries.

APPENDIX

In this Appendix, we show how to diagonalize the Hamiltonian matrix
for the closed rippled box. After the coordinate change,

u=x, v=
y

b+a } cos((4?�L) x)
(17)

we have a differential equation defined in a rectangular region with coordi-
nates, (u, v). The Schro� dinger equation in terms of the coordinates, u and v,
is given by

&
�2

2m
(�2

u+h1�2
v+h2�2

uv+h3 �v) �l (u, v)=El�l (u, v) (18)
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with boundary conditions �l (0, v)=0, �l (200, v)=0, �l (u, 0)=0, and
�l (u, 1)=0. Note that the wave function is normalized as

|| - g �-
l (u, v) �l $(u, v) du dv=$ll $ (19)

where g is defined such that g&1�4=[b+a } cos((4?�L) } x)]&1�2.
The solution, �l (x, y), can be expanded in terms of a Fourier basis,

�l (u, v)= :
�

m=1

:
�

n=1

B l
mn ,mn(u, v) (20)

with

,mn(u, v)=?&1�2g&1�4 sin(m?v) sin(n?u�L) (21)

where B l
mn are the unknown expansion coefficients. As a result of this

expansion, the boundary value problem can be transformed into the eigen-
value problem,

:
�

m=1

:
�

n=1

Hmnm$n$B l
mn=ElB l

mn (22)

The Hamiltonian matrix elements, Hmnm$n$ , are given by

Hmnm$n$=|
L

0
du |

1

0
dv �:(sin(m?v) } f -) } P } g:; } �;(sin(m$?v) } f $) (23)

where f #sin(n?u�L)�- P = f -, f $#sin(n$?u�L)�- P = f $-, P#b+a }
cos((4?�L) x), and g:; is the (:, ;) matrix element of the metric matrix,

g� #\
1

4? } a } v } sin(4?u�L)
L } P

4? } a } v } sin(4?u�L)
L } P

L2+4? } a } v } sin(4?u�L)2

L2 } P2 +
We calculate the Hamiltonian matrix element using Eq. (23). We

reduce the double integral to a single integral after integrating in the v
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direction. After some algebra we find the following form which is suitable
for numerical calculations,

Hmnm$n$=
n2?2$nn$$mm$

4L
+2?2a2J 4

nn$$mm$+
8a2m2?4

3L2 J 4
nn$$mm$

+(1&$mm$) K1 }
4?
L

a(nJ 2
nn$&n$J 2

n$n)+(1&$mm$) K2 J 4
nn$

16?2

L2 a2

(24)

where K1#(4�?2)[mm$�(m2&m$2)], K2#[mm$ } (?2m$4&12m$2&2mm$2?2

+m4?2&4m2)]�?2(m&m$)3 (m+m$)3 and the integrals are defined as,

J 2
nn$#|

L

0
du sin(n?u�L) cos(n$?u�L) sin(4?u�L)�P,

J 3
nn$#|

L

0
du sin(n?u�L) sin(n$?u�L)�P,

J 4
nn$#|

L

0
du sin(n?u�L) sin(n$?u�L) sin2(4?u�L)�P2,

J 5
nn$#|

L

0
du sin(n?u�L) sin(n$?u�L) sin(4?u�L)�P

The eigenvalues and eigenvectors of H can be calculated efficiently due to
the sinusoidal integrals. Eigenvectors of H give values for the expansion
coefficients, B l

mn , and the eigenfunctions in u-v space can be found from
these coefficients. The solution can then be transformed back to x-y space
to see the wave-function in real space.
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